研究紀要第111号 「福島県の児童生徒の学力の到達状況に関する研究」 -049/166page
[資料2]
水槽に水を入れる例 底面から5cmの高さまで水が入っている水槽に,1分間に2cmずつ増えるように一定の割合で水を入れていきます。x分後に,底面から水面までの高さがycmになりました。yをxの式で表しなさい。
の依存関係はどうなっているかを考えさせた上で,[資料2]のように図と関連させてみると,1次関数の式がイメージしやすくなる。また,線分図に表す方法により,2量の関係がとらえやすくなるなどの,生徒自身が解決の手がかりを得られるような指導の工夫が大切である。
イ 「1次関数でない」ものとの比較により, 1 次関数を特徴づけよう
関数で表される事象は,私たちの周りにたくさん見られる。そこで,l次関数でない関数との比較により,l次関数の概念が正しく把握でき,その特徴がより明確になる場合が多い。例えば,[資料3]のように,グラフの指導において,l日の時間ごとの気温の変化のグラフとl次関数のグラフとを比較
「資料3]
することによって「変化の割合が―定である」という1次関数の特徴を,より明確に理解させることができる。
ウ 関数指導にコンピュータを活用しよう
関数指導は,次のような理由からコンピュータを活用すると効果的である。
・グラフが簡単に,しかも正確にかける。 数値計算における生徒の負担を軽減し考察 の時間を多く確保できる。
・次々に変化するパソコンの画面から課題を発 見したり,さらに課題の条件を変えて発展させ たりすることが容易である。
・実験が困難なこともシミュレーションにより 可能になる。
コンピュータを活用すると,生徒が自由に式を立て,それが対応表やグラフに表されることが分かり,より関数に親しみやすくなる。生徒によっては,コンピュータを操作する中で,2乗に比例する関数やさらに高次の関数の存在に気づくこともあろう。なお,グラフ電卓も手軽に使えるようになってきているので,興味・関心を高めるためにも,生徒に利用させたいものである。