教師のための統計入門-057/233page
たれば4ページを開くことになります。0と9が当たれば,それは読みとばします。なぜなら,0のとき4ページ,9のとき1ページとしますと,どのページも等しい確率で選ばれるという条件が成りたたなくなるからです。
乱数表が23ページもある,という場合には,鉛筆の当った数字を10の位の数とみて2桁読みにします。例えば,乱数…37165……の1に当たったら16ページを開きます。もしも,乱数……24951……の9に当たったら,余り方式で,95を23で割った余り3ページを開ききたいところですが,これはいけません。この場合,00と93以上の2桁の数字は読みとばさなければなりません。
その理由は,すでにおわかりのように,1から23までのどの数字も,等しい確率で選ばれたことにはならないからです。
○ このようにして,乱数表のページが決まったとします。次には,この乱数表のどこを出発点、として使うかが問題になります。
乱数表は,ふつう1ページ,横50行ぐらい,縦50列ぐらいのものが多いので,行の数,列の数とも2桁の場合として話を進めます。
まず,初めに,出発点とする行を選びます。鉛筆を落とした結果16行目と決まったとします。次に列を同様にして決めます。その結果13列目と決まったとします。このようにして,前に決めた乱数表のページの,16行13列の数字が,出発点として決定されたわけです。
ここから,この乱数表を,ふつうは横に(縦に読んでもかまいませんが)読んでいきます。
○ さて,15,013人から1,600人を,いよいよ乱数表を用いて抽出することになります。いま,下のように出発点(( )印)が決定されたとします。
…01(7)6 59571 65105 13028 43915 67626…
出発点から,この乱数を5桁読みしますと,
76595, 71651, 05130, 28439, 15676 ,26…